Dynamical stability of body center cubic iron at the Earth's core conditions.
نویسندگان
چکیده
Here, using self-consistent ab initio lattice dynamical calculations that go beyond the quasiharmonic approximation, we show that the high-pressure high-temperature bcc-Fe phase is dynamically stable. In this treatment the temperature-dependent phonon spectra are derived by exciting all the lattice vibrations, in which the phonon-phonon interactions are considered. The high-pressure and high-temperature bcc-Fe phase shows standard bcc-type phonon dispersion curves except for the transverse branch, which is overdamped along the high symmetry direction Gamma-N, at temperatures below 4,500 K. When lowering the temperature down to a critical value T(C), the lattice instability of the bcc structure is reached. The pressure dependence of this critical temperature is studied at conditions relevant for the Earth's core.
منابع مشابه
Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core.
The composition and the structure of the Earth's solid inner core are still unknown. Iron is accepted to be the main component of the core. Lately, the body-centered cubic (bcc) phase of iron was suggested to be present in the inner core, although its stability at core conditions is still in discussion. The higher density of pure iron compared with that of the Earth's core indicates the presenc...
متن کاملHemispherical anisotropic patterns of the Earth's inner core.
It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves traveling approximately 3% faster along polar paths than along equatorial directions. Hemispherical anisotropic patterns of the solid Earth's core are rather complex, and the commonly used hexagonal-close-packed iron phase might be insufficient to account for seismological observations. We...
متن کاملIron-silicon alloy in Earth's core?
We have investigated the phase relations in the iron-rich portion of the iron-silicon (Fe-Si) alloys at high pressures and temperatures. Our study indicates that Si alloyed with Fe can stabilize the body-centered cubic (bcc) phase up to at least 84 gigapascals (compared to approximately 10 gigapascals for pure Fe) and 2400 kelvin. Earth's inner core may be composed of hexagonal close-packed (hc...
متن کاملMelting of iron under Earth's core conditions from diffusion Monte Carlo free energy calculations.
The temperature of Earth's core is a parameter of critical importance to model the thermal structure of Earth. Since the core is mainly made of iron, with a solid liquid boundary (the inner core boundary) at 1220 km from the center of the Earth, the melting temperature of iron at the pressure of the ICB provides constraints on the temperature of the core. These constraints are based either on e...
متن کاملPhysics of the Earth and Planetary Interiors Ab Initio Lattice Dynamics Calculations on the Combined Effect of Temperature and Silicon on the Stability of Different Iron Phases in the Earth's Inner Core
The Earth’s solid inner core consists mainly of iron (Fe), alloyed with lighter elements, such as silicon (Si). Interpretation of seismic anisotropy and layering requires knowledge of the stable crystal structure in the inner core. We report ab initio density functional theory calculations on the free energy and vibrational stability of pure iron and Fe–Si alloys at conditions representative of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 22 شماره
صفحات -
تاریخ انتشار 2010